Large deviations for functionals of spatial point processes with applications to random packing and spatial graphs

نویسندگان

  • T. Schreiber
  • J. E. Yukich
چکیده

Functionals of spatial point process often satisfy a weak spatial dependence condition known as stabilization. We prove general Donsker–Varadhan large deviation principles (LDP) for such functionals and show that the general result can be applied to prove LDPs for various particular functionals, including those concerned with random packing, nearest neighbor graphs, and lattice versions of the Voronoi and sphere of influence graphs. r 2005 Elsevier B.V. All rights reserved. MSC: primary 60F05; secondary: 60D05

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Process Level Moderate Deviations for Stabilizing Functionals

Functionals of spatial point process often satisfy a weak spatial dependence condition known as stabilization. In this paper we prove process level moderate deviation principles (MDP) for such functionals, which is a level-3 result for empirical point fields as well as a level2 result for empirical point measures. The level-3 rate function coincides with the so-called specific information. We s...

متن کامل

Stabilization and limit theorems for geometric functionals of Gibbs point processes

Given a Gibbs point process P on R having a weak enough potential Ψ, we consider the random measures μλ := P x∈P∩Qλ ξ(x,P ∩Qλ)δx/λ1/d , where Qλ := [−λ /2, λ/2] is the volume λ cube and where ξ(·, ·) is a translation invariant stabilizing functional. Subject to Ψ satisfying a localization property and translation invariance, we establish weak laws of large numbers for λ−1μλ(f), f a bounded test...

متن کامل

Spatial statistics for lattice points on the sphere I‎: ‎Individual results

‎We study the spatial distribution of point sets on the sphere obtained from the representation of a large integer as a sum of three integer squares‎. ‎We examine several statistics of these point sets‎, ‎such as the electrostatic potential‎, ‎Ripley's function‎, ‎the variance of the number of points in random spherical caps‎, ‎and the covering radius‎. ‎Some of the results are conditional on t...

متن کامل

Limit theorems for geometric functionals of Gibbs point processes

Observations are made on a point process Ξ in R in a window Qλ of volume λ. The observation, or ‘score’ at a point x, here denoted ξ(x, Ξ), is a function of the points within a random distance of x. When the input Ξ is a Poisson or binomial point process, the large λ limit theory for the total score ∑ x∈Ξ∩Qλ ξ(x, Ξ ∩Qλ), when properly scaled and centered, is well understood. In this paper we es...

متن کامل

Generating Functionals of Random Packing Point Processes: From Hard-Core to Carrier Sensing

In this paper we study the generating functionals of several random packing processes: the classical Matérn hard-core model; its extensions, the k-Matérn models and the ∞-Matérn model, which is an example of random sequential packing process. We first give a sufficient condition for the ∞-Matérn model to be well-defined (unlike the other two, the latter may not be well-defined on unbounded spac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005